日韩欧美福利视频_亚洲欧洲成视频免费观看_国v精品久久久网_7777精品久久久大香线蕉小说

技術(shù)文章

Technical articles

當(dāng)前位置:首頁技術(shù)文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點(diǎn)擊次數(shù):2975

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細(xì)的文獻(xiàn),請到中科院一區(qū)  影響因子12    感謝所有的科研奉獻(xiàn)者辛勞的付出。

日韩欧美福利视频_亚洲欧洲成视频免费观看_国v精品久久久网_7777精品久久久大香线蕉小说
一区二区三区精品视频在线观看| 一区二区三区毛片| 久久一二三四| 亚洲国产精品123| 在线免费观看欧美| 国产精品一区二区三区久久| 免费永久网站黄欧美| 在线一区日本视频| 一区二区自拍| 国产综合色精品一区二区三区| 欧美大片免费久久精品三p | 亚洲精品在线视频观看| 国产精品视频观看| 欧美视频免费在线观看| 欧美极品aⅴ影院| 欧美久久成人| 午夜精品久久久久久久| 亚洲深爱激情| 欧美午夜在线视频| 亚洲在线视频网站| 亚洲午夜高清视频| 国产精品激情| 国产亚洲精品成人av久久ww| 国产精品免费久久久久久| 欧美激情在线| 欧美日韩国产一区二区三区| 欧美日韩精品中文字幕| 欧美日韩一区二区三区在线观看免| 欧美成人免费大片| 欧美日韩在线播放一区二区| 国产精品日日做人人爱| 国产午夜精品麻豆| 亚洲一区二区三区影院| 久久精品国产69国产精品亚洲| 久久精品国产欧美激情| 六月婷婷一区| 欧美另类变人与禽xxxxx| 国产精品国产三级国产专区53 | 91久久综合亚洲鲁鲁五月天| 91久久夜色精品国产九色| 亚洲欧洲日产国产综合网| 在线亚洲自拍| 久久亚裔精品欧美| 欧美日韩一区二区视频在线 | 欧美日韩国产一区二区| 亚洲经典在线| 欧美日韩国产精品专区| 一区二区三区精品久久久| 欧美亚洲免费在线| 久久精品麻豆| 欧美精品在线免费播放| 亚洲片在线观看| 午夜精品久久久久久久| 久久精品国产欧美亚洲人人爽| 欧美午夜视频网站| 日韩一级精品| 99国产精品久久| 亚洲在线视频网站| 制服丝袜亚洲播放| 欧美日韩成人一区二区| 欧美午夜电影完整版| 亚洲精品欧美日韩专区| 一本色道久久综合| 欧美黑人一区二区三区| 老司机免费视频久久| 激情久久久久久久| 国产日韩精品在线播放| 亚洲第一精品电影| 日韩视频二区| 欧美黄色aa电影| 亚洲免费视频成人| 久久电影一区| 欧美老女人xx| 一本色道久久综合亚洲精品婷婷 | 欧美成人精品1314www| 在线看国产日韩| 久久久久久久一区二区三区| 毛片av中文字幕一区二区| 久久av资源网| 黄色成人免费网站| 欧美美女视频| 亚欧成人在线| 亚洲精品美女91| av72成人在线| 美女主播精品视频一二三四| 国产精品大全| 黄色国产精品一区二区三区| 久久久久国产一区二区三区四区 | 午夜一区不卡| 一区二区视频免费完整版观看| 老鸭窝毛片一区二区三区 | 久久久福利视频| 亚洲乱亚洲高清| 久久亚洲电影| 99在线热播精品免费| 欧美天天视频| 亚洲一级黄色av| 国产女人18毛片水18精品| 欧美在线亚洲在线| 一区二区三区视频在线播放| 亚洲欧洲在线观看| 国产日韩精品视频一区| 99精品国产一区二区青青牛奶 | 亚洲黄一区二区三区| 欧美亚韩一区| 欧美成人免费全部| 国产最新精品精品你懂的| 欧美激情精品久久久久久免费印度| 亚洲免费在线电影| 亚洲精品专区| 欧美在线播放| 亚洲人屁股眼子交8| 黄色综合网站| 国产无一区二区| 欧美性大战久久久久久久蜜臀| 久久久国际精品| 性色av香蕉一区二区| 欧美黄污视频| 久久久久国产成人精品亚洲午夜| 亚洲成人在线网| 欧美制服丝袜第一页| 一本不卡影院| 影音先锋中文字幕一区二区| 国产欧美日韩精品丝袜高跟鞋 | 欧美女人交a| 欧美日韩国内自拍| 欧美激情精品久久久久久| 欧美国产视频在线| 欧美超级免费视 在线| 久久久久久尹人网香蕉| 久久久久久夜| 蜜臀久久99精品久久久画质超高清| 久久精品九九| 美女福利精品视频| 国产精品美女主播在线观看纯欲| 欧美性做爰毛片| 欧美三日本三级少妇三2023| 欧美女同在线视频| 国产精品99免费看 | 欧美成人精品一区二区| 免费日韩成人| 欧美精品在线免费播放| 欧美日本亚洲韩国国产| 欧美体内she精视频| 国产精品伦一区| 亚洲欧洲中文日韩久久av乱码| 亚洲毛片在线看| 亚洲视频第一页| 久久成人精品视频| 欧美大尺度在线观看| 欧美日韩国产首页在线观看| 国产精品福利网| 国产精品乱人伦一区二区| 在线观看的日韩av| 99re66热这里只有精品3直播| 亚洲视频一区二区免费在线观看| 性感少妇一区| 免费不卡视频| 国产精品日韩欧美大师| 狠狠做深爱婷婷久久综合一区| 最新中文字幕一区二区三区| 亚洲精品婷婷| 开心色5月久久精品| 国产精品国产亚洲精品看不卡15 | 亚洲精品1234| 亚洲黄色在线| 免播放器亚洲一区| 欧美激情欧美激情在线五月| 国产精品成人午夜| 激情综合自拍| 亚洲综合精品一区二区| 久久视频一区二区| 欧美制服丝袜| 欧美福利视频| 韩国一区电影| 中文在线一区| 免费h精品视频在线播放| 国产精品美女一区二区在线观看| 黄色成人精品网站| 亚洲一区国产视频| 欧美成人精品1314www| 国产婷婷色一区二区三区在线| 国产精品国产馆在线真实露脸| 国产一区二区你懂的| 国产精品99久久久久久久vr| 欧美岛国在线观看| 狠狠色狠色综合曰曰| 亚洲综合国产激情另类一区| 韩国美女久久| 亚洲一区bb| 欧美色视频在线| 亚洲国产精品一区在线观看不卡 | 亚洲午夜一区二区三区| 久久人人97超碰人人澡爱香蕉| 国产精品系列在线播放| 一区二区高清视频在线观看| 乱人伦精品视频在线观看| 国产一区二区精品久久91| 午夜精品久久久久久久男人的天堂| 一本久久综合亚洲鲁鲁|