日韩欧美福利视频_亚洲欧洲成视频免费观看_国v精品久久久网_7777精品久久久大香线蕉小说

技術文章

Technical articles

當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數:3095

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

日韩欧美福利视频_亚洲欧洲成视频免费观看_国v精品久久久网_7777精品久久久大香线蕉小说
亚洲一二三区在线观看| 国产酒店精品激情| 日本福利一区二区| 91福利社在线观看| 91精品一区二区三区久久久久久 | 精品国产伦一区二区三区观看方式| 欧美日本精品一区二区三区| 日韩欧美国产一区二区三区 | 国产精品美女久久久久aⅴ| 国产亚洲成aⅴ人片在线观看| 国产精品初高中害羞小美女文| 亚洲一区二区三区在线播放| 精东粉嫩av免费一区二区三区| av成人老司机| 精品粉嫩aⅴ一区二区三区四区| 另类欧美日韩国产在线| 99精品视频在线观看| 日韩免费看的电影| 国产精品18久久久久久久久久久久 | 色偷偷88欧美精品久久久| 欧美成人午夜电影| 亚洲一区二区精品视频| 91精品国产综合久久香蕉麻豆| 性久久久久久久久| 91麻豆蜜桃一区二区三区| 日韩欧美一级特黄在线播放| 精品中文字幕一区二区| 成人欧美一区二区三区白人| 成人黄色免费短视频| 精品99一区二区| 99麻豆久久久国产精品免费优播| 一区二区三区在线视频观看 | 国产精品一区在线观看你懂的| 国产精品久久久久久久第一福利 | 国产精品人成在线观看免费| 在线免费不卡电影| 亚洲美女在线一区| 99久久99久久久精品齐齐| 亚洲午夜激情网站| 国产欧美一区二区精品性| 国产真实精品久久二三区| 欧美日韩国产小视频| 国产资源在线一区| 日韩极品在线观看| 91精品国产免费| 日本aⅴ精品一区二区三区| 欧美日韩一区三区| 亚洲国产成人tv| 久久午夜电影网| 成人综合日日夜夜| 国产精品美女久久福利网站| 91精品国产综合久久久久久漫画 | 91九色最新地址| 国产v综合v亚洲欧| 综合欧美一区二区三区| 色婷婷精品久久二区二区蜜臀av| 蜜臀av一区二区在线免费观看| 日韩精品在线网站| 在线免费观看日韩欧美| 92国产精品观看| jlzzjlzz欧美大全| 成人精品gif动图一区| 国产福利91精品一区| 亚洲天堂精品在线观看| 欧美激情自拍偷拍| 色美美综合视频| 成人激情小说乱人伦| 国产成人在线色| 狠狠色丁香久久婷婷综合_中| 日韩中文字幕av电影| 天天色天天爱天天射综合| 久久精品一区八戒影视| 精品精品国产高清一毛片一天堂| 欧美日韩一区二区在线视频| 欧美日韩美少妇| 91精品国产综合久久福利| 欧美日韩夫妻久久| 日韩欧美资源站| 97国产一区二区| 91在线你懂得| 在线国产电影不卡| 717成人午夜免费福利电影| 欧美日韩国产一级| 精品福利一二区| 国产精品污网站| 亚洲激情五月婷婷| 亚洲国产精品高清| **欧美大码日韩| 无吗不卡中文字幕| 国产在线精品一区二区| 五月开心婷婷久久| 国内精品伊人久久久久av一坑 | 久久人人97超碰com| 欧美午夜精品久久久久久孕妇| 国内精品久久久久影院色| 国产成人夜色高潮福利影视| 色哟哟一区二区三区| 91精品国产麻豆| 国产精品天天看| 午夜精品久久久久久不卡8050| 麻豆高清免费国产一区| av在线免费不卡| 91精品国产一区二区| 中文字幕色av一区二区三区| 日韩精品高清不卡| 色婷婷av一区二区三区gif| 欧美福利一区二区| 色老汉一区二区三区| 欧美夫妻性生活| 亚洲一区二区欧美激情| 国产在线视频一区二区三区| 一本一道波多野结衣一区二区| 色8久久精品久久久久久蜜| 欧美日韩国产三级| 国内精品在线播放| 一本一道综合狠狠老| 欧美一级艳片视频免费观看| 精品国产精品一区二区夜夜嗨| 国产欧美一区在线| 亚洲国产成人va在线观看天堂| 韩国精品主播一区二区在线观看 | 亚洲欧洲性图库| 久久99国产精品成人| 91国偷自产一区二区三区观看 | 99久久国产免费看| 国产日韩在线不卡| 极品少妇一区二区三区精品视频 | 久久女同互慰一区二区三区| 日本亚洲欧美天堂免费| 男女男精品网站| 91啪亚洲精品| 国产精品久久一级| 国产suv精品一区二区883| 精品粉嫩aⅴ一区二区三区四区| 首页国产丝袜综合| 51精品久久久久久久蜜臀| 亚洲国产日韩一级| 欧美人与禽zozo性伦| 天天色图综合网| 91麻豆精品久久久久蜜臀| 日韩国产一二三区| 91精品国产综合久久蜜臀| 免费人成在线不卡| 亚洲精品一区二区三区在线观看| 蜜臀va亚洲va欧美va天堂| 亚洲精品在线电影| 国产精品99久久久| 成人欧美一区二区三区小说| 色婷婷av一区二区三区gif| 午夜一区二区三区在线观看| 欧美日韩一区在线| 九一九一国产精品| 久久婷婷国产综合精品青草| 粉嫩在线一区二区三区视频| 中日韩av电影| 日本韩国精品一区二区在线观看| 亚洲黄色小视频| 7799精品视频| 国产一区二区精品久久| 国产精品女同一区二区三区| 色综合网色综合| 欧美精品一区二区三区蜜臀 | 日韩精品1区2区3区| 久久精品无码一区二区三区| 成人黄色777网| 亚洲综合色噜噜狠狠| 3atv一区二区三区| 国产成人在线影院| 亚洲国产一区二区三区| 精品日产卡一卡二卡麻豆| 成人自拍视频在线| 午夜影院久久久| 中文字幕免费不卡| 欧美浪妇xxxx高跟鞋交| 国产成人综合亚洲网站| 亚洲一二三四在线| 国产无遮挡一区二区三区毛片日本| 色综合天天天天做夜夜夜夜做| 日韩高清一区二区| 综合久久综合久久| 精品伦理精品一区| 欧美无乱码久久久免费午夜一区 | 欧美日韩国产中文| 国产一区在线精品| 亚洲永久免费av| 国产日韩欧美在线一区| 在线不卡的av| 91女神在线视频| 成人免费视频视频| 美女一区二区久久| 亚洲一区电影777| 国产精品电影院| 久久综合资源网| 欧美一区二区在线不卡| 色88888久久久久久影院野外| 国产成人丝袜美腿| 国内久久精品视频| 精品亚洲欧美一区| 久久精品国产精品亚洲综合| 亚洲成人1区2区|